Long-term predictions of ecosystem acidification and recovery

Sci Total Environ. 2016 Oct 15:568:381-390. doi: 10.1016/j.scitotenv.2016.06.033. Epub 2016 Jun 12.

Abstract

This paper considers the long-term (500year) consequences of continued acid deposition, using a small forested catchment in S. England as an example. The MAGIC acidification model was calibrated to the catchment using data for the year 2000, and run backwards in time for 200years, and forwards for 500. Validation data for model predictions were provided by various stream and soil measurements made between 1977 and 2013. The model hindcast suggests that pre-industrial stream conditions were very different from those measured in 2000. Acid Neutralising Capacity (ANC) was +150μeqL(-1) and pH7.1: there was little nitrate (NO3). By the year 2000, acid deposition had reduced the pH to 4.2 and ANC to c. -100μeqL(-1), and NO3 was increasing in the stream. The future state of the catchment was modelled using actual deposition reductions up to 2013, and then based on current emission reduction commitments. This leads to substantial recovery, to pH6.1, ANC +43μeqL(-1), though it takes c. 250years. Then, however, steady acidification resumes, due to continued N accumulation in the catchment and leaching of NO3. Soil data collected using identical methods in 1978 and 2013 show that MAGIC correctly predicts the direction of change, but the observed data show more extreme changes - reasons for this are discussed. Three cycles of forest growth were modelled - this reduces NO3 output substantially during the active growth phase, and increases stream pH and ANC, but acidifies the soil which continues to accumulate nitrogen. The assumptions behind these results are discussed, and it is concluded that unmanaged ecosystems will not return to a pre-industrial state in the foreseeable future.

Keywords: Acidity; Catchment; Forest; Modelling; Nitrogen; Watershed.