Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair

Elife. 2016 Jun 15:5:e15251. doi: 10.7554/eLife.15251.

Abstract

Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1(+) progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis.

Keywords: immunology; intravital imaging; macrophages; mouse; wound healing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Homeostasis*
  • Macrophages / classification*
  • Macrophages / physiology*
  • Mice
  • Skin / cytology*
  • Skin / immunology*