Carving a 1D Co(II)-carboranylcarboxylate system by using organic solvents to create stable trinuclear molecular analogues: complete structural and magnetic studies

Dalton Trans. 2016 Jul 5;45(27):10916-27. doi: 10.1039/c6dt01744d.

Abstract

This work presents a straightforward methodology to achieve small linear trinuclear molecules based on the Co(II)-carboranylcarboxylate system obtained by carving a 1D polynuclear analogous system with the use of diethylether. The reaction of the carboranylcarboxylic ligand, 1-CH3-2-CO2H-1,2-closo-C2B10H10 (LH) with different cobalt salts leads to the polynuclear compound [Co2(μ-H2O)(1-CH3-2-CO2-1,2-closo-C2B10H10)4(THF)4], and the polymeric [Co(μ-H2O)(1-CH3-2-CO2-1,2-closo-C2B10H10)2]n(H2O)n. This latter 1D chain has been obtained by an unprecedented synthetic strategy for the isolation of cobalt(ii) compounds. [Co3(μ-H2O)2(1-CH3-2-CO2-1,2-closo-C2B10H10)6(H2O)2(C4H10O)2], is formed by the dissociation of the polymeric structure that forms when a mild coordinating solvent such as diethylether is added. These compounds have been characterized by analytical and spectroscopic techniques. X-ray analysis of and revealed that presents a dinuclear structure whereas is trinuclear; in both cases a six-coordinated Co(II) compound with water molecules bridging each of the two Co(II) centres has been observed. The magnetic properties of and show a weak antiferromagnetic behaviour, respectively, between the Co(II) centres mediated by two carboxylate ligands and a molecule of water.