Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S-Nitrosation Sites on Cathepsin D and HADH2

Cell Chem Biol. 2016 Jun 23;23(6):727-37. doi: 10.1016/j.chembiol.2016.05.008. Epub 2016 Jun 9.

Abstract

S-Nitrosoglutathione (GSNO) is an endogenous transnitrosation donor involved in S-nitrosation of a variety of cellular proteins, thereby regulating diverse protein functions. Quantitative proteomic methods are necessary to establish which cysteine residues are most sensitive to GSNO-mediated transnitrosation. Here, a competitive cysteine-reactivity profiling strategy was implemented to quantitatively measure the sensitivity of >600 cysteine residues to transnitrosation by GSNO. This platform identified a subset of cysteine residues with a high propensity for GSNO-mediated transnitrosation. Functional characterization of previously unannotated S-nitrosation sites revealed that S-nitrosation of a cysteine residue distal to the 3-hydroxyacyl-CoA dehydrogenase type 2 (HADH2) active site impaired catalytic activity. Similarly, S-nitrosation of a non-catalytic cysteine residue in the lysosomal aspartyl protease cathepsin D (CTSD) inhibited proteolytic activation. Together, these studies revealed two previously uncharacterized cysteine residues that regulate protein function, and established a chemical-proteomic platform with capabilities to determine substrate specificity of other cellular transnitrosation agents.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxyacyl CoA Dehydrogenases / chemistry*
  • 3-Hydroxyacyl CoA Dehydrogenases / isolation & purification
  • 3-Hydroxyacyl CoA Dehydrogenases / metabolism*
  • Cathepsin D / chemistry*
  • Cathepsin D / metabolism*
  • Humans
  • MCF-7 Cells
  • Nitrosation
  • Proteomics*

Substances

  • 3-Hydroxyacyl CoA Dehydrogenases
  • HSD17B10 protein, human
  • CTSD protein, human
  • Cathepsin D