Preparation of purified perikaryal and synaptosomal mitochondrial fractions from relatively small hypothalamic brain samples

MethodsX. 2016 May 19:3:417-29. doi: 10.1016/j.mex.2016.05.004. eCollection 2016.

Abstract

In order to measure the activity of neuronal mitochondria, a representative proof of neuronal processes, physiologically relevant mitochondrial samples need to be gained as simply as possible. Existing methods are, however, either for tissue samples of large size and/or homogenous microstructures only, or are not tested for mitochondrial function measurements. In the present article we describe a gradient fractionation method to isolate viable and well-coupled mitochondria from relatively heterogeneous histological microstructures such as the hypothalamus. With this new method, we are able to isolate a sufficient amount of functional mitochondria for determination of respiratory activity, in a short period of time, using affordable equipment. •Verified by electron microscopy, our method separates highly enriched and well-preserved perikaryal and synaptosomal mitochondria. Both fractions contain minimal cell debris and no myelin. Respiratory measurements (carried out by Clark-type electrode) confirmed undisturbed mitochondrial function providing well-evaluable records. The demonstrated protocol yields highly viable mitochondrial subfractions within 3 h from small brain areas for high-precision examinations. Using this procedure, brain regions with relatively heterogeneous histological microstructure (hypothalamus) can also be efficiently sampled.•Up to our present knowledge, our method is the shortest available procedure with the lowest sample size to gain debris-free, fully-viable mitochondria.

Keywords: Clark-type electrode; Gradient fractionation; Isolation of mitochondrial fraction for oxygen-consumption measurements; Percoll; Respiration measurement.