Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method

Nanotechnology. 2016 Jul 22;27(29):295601. doi: 10.1088/0957-4484/27/29/295601. Epub 2016 Jun 8.

Abstract

Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant [Formula: see text] and [Formula: see text] planes at the exposed side surfaces while the conventional [Formula: see text] planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials.