Instrumentation for Time-of-Flight Positron Emission Tomography

Nucl Med Mol Imaging. 2016 Jun;50(2):112-22. doi: 10.1007/s13139-016-0401-5. Epub 2016 Feb 22.

Abstract

Positron emission tomography (PET) is a molecular imaging modality that provides information at the molecular level. This system is composed of radiation detectors to detect incoming coincident annihilation gamma photons emitted from the radiopharmaceutical injected into a patient's body and uses these data to reconstruct images. A major trend in PET instrumentation is the development of time-of-flight positron emission tomography (ToF-PET). In ToF-PET, the time information (the instant the radiation is detected) is incorporated for image reconstruction. Therefore, precise and accurate timing recording is crucial in ToF-PET. ToF-PET leads to better localization of the annihilation event and thus results in overall improvement in the signal-to-noise ratio (SNR) of the reconstructed image. Several factors affect the timing performance of ToF-PET. In this article, the background, early research and recent advances in ToF-PET instrumentation are presented. Emphasis is placed on the various types of scintillators, photodetectors and electronic circuitry for use in ToF-PET, and their impact on timing resolution is discussed.

Keywords: Instrumentation; Positron emission tomography; Time of flight; Timing resolution.

Publication types

  • Review