Advances in enantioselective analysis of chiral brominated flame retardants. Current status, limitations and future perspectives

Sci Total Environ. 2016 Oct 1:566-567:1120-1130. doi: 10.1016/j.scitotenv.2016.05.148. Epub 2016 Jun 2.

Abstract

Enantioselective analysis is a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental contaminants because their environmental biodegradation is mostly stereospecific. However, it is challenging when applied to new contaminants since enantioselective analysis methods are currently available only for a limited number of compounds. The enantioselective analysis of chiral novel brominated flame retardants (NBFRs) either using gas chromatography (GC) or liquid chromatography (LC) with various chiral stationary phases (CSP) coupled with various mass spectrometric techniques was extensively discussed. The elution order of hexabromocyclododecane (HBCD) enantiomers in chiral LC was reviewed using the experimental LC data combined also with predictions from a multi-mode Hamiltonian dynamics simulation model based on interaction energies of HBCD enantiomers with β-permethylated cyclodextrin. The further development of analytical methodologies for new chiral BFRs using advanced hyphenated analytical techniques, but also the next generation mass spectrometer analyzers (i.e. GC-Qrbitrap MS-MS, LC-Qrbitrap MS-MS), will contribute to a better characterization of the transformation pathways of chiral BFRs.

Keywords: CSP; Enantioselective analysis; HBCDs; Novel brominated flame retardants (NBFRs).

Publication types

  • Review