Exploring the Effect of Ligand Structural Isomerism in Langmuir-Blodgett Films of Chiral Luminescent Eu(III) Self-Assemblies

Chemistry. 2016 Jul 4;22(28):9709-23. doi: 10.1002/chem.201600560. Epub 2016 Jun 3.

Abstract

Here we have investigated the influence of the antenna group position on both the formation of chiral amphiphilic Eu(III) -based self-assemblies in CH3 CN solution and, on the ability to form monolayers on the surface of quartz substrates using the Langmuir-Blodgett technique, by changing from the 1-naphthyl (2(R), 2(S)) to the 2-naphthyl (1(R), 1(S)) position. The evaluation of binding constants of the self- assemblies in CH3 CN solution was achieved using conventional techniques such as UV/Visible and luminescence spectroscopies along with more specific circular dichroism (CD) spectroscopy. The binding constants obtained for EuL, EuL2 and EuL3 species in the case of 2-naphthyl derivatives were comparable to those obtained for 1-naphthyl derivatives. The analysis of the changes in the CD spectra of 1(R) and 1(S) upon addition of Eu(III) not only allowed us to evaluate the values of the binding constants but the resulting recalculated spectra may also be used as fingerprints for assignment of the chiral self-assembly species formed in solution. The obtained monolayers were predominantly formed from EuL3 (≈85 %) with the minor species present in ≈15 % EuL2 .

Keywords: Langmuir-Blodgett films; europium; lanthanides; luminescence; self-assembly.