Usefulness of ELISA Methods for Assessing LPS Interactions with Proteins and Peptides

PLoS One. 2016 Jun 1;11(6):e0156530. doi: 10.1371/journal.pone.0156530. eCollection 2016.

Abstract

Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, can trigger severe inflammatory responses during bacterial infections, possibly leading to septic shock. One approach to combatting endotoxic shock is to neutralize the most conserved part and major mediator of LPS activity (lipid A) with LPS-binding proteins or peptides. Although several available assays evaluate the biological activity of these molecules on LPS (e.g. inhibition of LPS-induced TNF-α production in macrophages), the development of simple and cost-effective methods that would enable preliminary screening of large numbers of potential candidate molecules is of great interest. Moreover, it would be also desirable that such methods could provide information about the possible biological relevance of the interactions between proteins and LPS, which may enhance or neutralize LPS-induced inflammatory responses. In this study, we designed and evaluated different types of ELISA that could be used to study possible interactions between LPS and any protein or peptide. We also analysed the usefulness and limitations of the different ELISAs. Specifically, we tested the capacity of several proteins and peptides to bind FITC-labeled LPSs from Escherichia coli serotypes O111:B4 and O55:B5 in an indirect ELISA and in two competitive ELISAs including casein hydrolysate (hCAS) and biotinylated polymyxin B (captured by deglycosylated avidin; PMX) as LPS-binding agents in the solid phase. We also examined the influence of pH, detergents and different blocking agents on LPS binding. Our results showed that the competitive hCAS-ELISA performed under mildly acidic conditions can be used as a general method for studying LPS interactions, while the more restrictive PMX-ELISA may help to identify proteins/peptides that are likely to have neutralizing properties in vitro or in vivo.

MeSH terms

  • Enzyme-Linked Immunosorbent Assay / methods*
  • Lipopolysaccharides / metabolism*
  • Peptides / metabolism*
  • Protein Binding
  • Proteins / metabolism*

Substances

  • Lipopolysaccharides
  • Peptides
  • Proteins

Grants and funding

This work was funded by Ministerio de Ciencia e Innovación, Spain, Grant AGL2011-30563-C03; Xunta de Galicia, Spain, Grant GPC2014/058; and the European Fund for Regional Development (FEDER). VMS holds a predoctoral fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (Programa de Formación del Profesorado Universitario) and RAOM is recipient of a fellowship from the Spanish Ministerio de Economía y Competitividad (Programa de Formación de Personal Investigador). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.