Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu)

Radiol Oncol. 2016 Feb 22;50(2):168-74. doi: 10.1515/raon-2016-0010. eCollection 2016 Jun 1.

Abstract

Background: Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells.

Materials and methods: The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network.

Results: Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle.

Conclusions: RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

Keywords: RITA; X-ray; hypopharyngeal squamous cell carcinoma; next generation sequencing.