Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping

Small. 2016 Jul;12(27):3703-11. doi: 10.1002/smll.201601131. Epub 2016 Jun 1.

Abstract

Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon-based composite co-doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co-Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm(-2) current density can be achieved for two half reactions in alkaline solutions-hydrogen evolution reaction and oxygen evolution reaction-at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal-free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co-Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N-doped carbon. This study indicates that a trace level of the introduced Co into N-doped carbon can significantly enhance its electrocatalytic activity toward water splitting.

Keywords: carbon nanosheets; co-doping; hydrogen evolution reaction; oxygen evolution reaction; water splitting.