Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes

Langmuir. 2016 Jun 28;32(25):6515-23. doi: 10.1021/acs.langmuir.6b00734. Epub 2016 Jun 14.

Abstract

The controlled release of biomolecules from a substrate surface is a challenging task. Photocleavable linkers appear as attractive candidates for light-triggered delivery. We show here the possibility of creating photoactivable diamond nanowire interfaces, from which molecules can be photochemically released upon irradiation at 365 nm for several minutes. The approach is based on the covalent modification of boron-doped diamond nanowires (BDD NWs) with o-nitrobenzyl containing ligands, to which different biomolecules can be attached via amide bond formation. The photodecomposition reaction and the subsequent release of small proteins such as lysozyme or enzymes such as horseradish peroxidase (HRP) are investigated using electrochemical impedance spectroscopy. Using a colorimetric assay, we demonstrate that, while complete cleavage of HRP was achieved upon irradiation for 10 min at 1 W cm(-2), this exposure time resulted in a partial loss of enzymatic activity.

Publication types

  • Research Support, Non-U.S. Gov't