Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels

Opt Lett. 2016 Jun 1;41(11):2497-500. doi: 10.1364/OL.41.002497.

Abstract

Typical single-pixel imaging techniques inherently consume a large number of measurements to reconstruct a high-quality and high-resolution image. Three-dimensional (3-D) single-pixel imaging with both high sampling efficiency and high depth accuracy remains a challenge. We implement fringe projection virtually by exploiting Helmholtz reciprocity. Depth information is modulated into a deformed fringe pattern whose Fourier spectrum is sampled by using sinusoidal intensity pattern illumination and single-pixel detection. The fringe pattern has a highly focused first-order component in its Fourier spectrum, which allows us to efficiently acquire the depth information from measurements far fewer than illumination pattern pixels. The 3-D information is retrieved through Fourier analysis. We experimentally obtained a 3-D reconstruction of a complex object with 599×599 effective pixels, achieving a measurement-to-pixel ratio of 5.78%. The depth accuracy is evaluated at sub-millimetric level by using a test object.