Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates

Phys Rev Lett. 2016 May 13;116(19):197003. doi: 10.1103/PhysRevLett.116.197003. Epub 2016 May 13.

Abstract

Here we demonstrate how the Fermi surface topology and quantum many-body interactions can be manipulated via epitaxial strain in the spin-triplet superconductor Sr_{2}RuO_{4} and its isoelectronic counterpart Ba_{2}RuO_{4} using oxide molecular beam epitaxy, in situ angle-resolved photoemission spectroscopy, and transport measurements. Near the topological transition of the γ Fermi surface sheet, we observe clear signatures of critical fluctuations, while the quasiparticle mass enhancement is found to increase rapidly and monotonically with increasing Ru-O bond distance. Our work demonstrates the possibilities for using epitaxial strain as a disorder-free means of manipulating emergent properties, many-body interactions, and potentially the superconductivity in correlated materials.