Urinary thrombomodulin and catecholamine levels are interrelated in healthy volunteers immersed in cold and warm water

Temperature (Austin). 2015 May 5;3(1):161-6. doi: 10.1080/23328940.2015.1033589. eCollection 2016 Jan-Mar.

Abstract

Severe hypothermia has been shown to influence the levels of catecholamines and thrombomodulin, an endothelial protein essentially involved in the regulation of haemostasis and inflammation. A link between thrombomodulin and catecholamines during cold exposure has also been previously suggested. The aim of this study was to assess the influence of short-term cold exposure without hypothermia on catecholamines and the circulating and urinary thrombomodulin levels. Seven healthy male subjects were immersed in cold water (+10°C) for 10 minutes followed by a 20-minute immersion in +28°C water. Warm water immersion was performed separately for each subject (+30°C for 30 minutes). Thrombomodulin and catecholamine concentrations were measured from pre- and post-immersion (up to 23 hours) samples. In urine, the thrombomodulin level correlated strongly with adrenaline (ρ = 0.806) and noradrenaline (ρ = 0.760) levels. There were no significant differences in thrombomodulin levels between immersion temperatures. Post-immersion urinary thrombomodulin levels were significantly lower than the pre-immersion level at both immersion temperatures. Median concentrations of plasma noradrenaline and urinary adrenaline were higher after exposure to +10°C than to +30°C. Thus, further evidence of the association between thrombomodulin and catecholamines was gained in a physiologically relevant setting in humans. Additionally, it is evident that a short-term cold exposure was not able to elicit changes in the thrombomodulin levels in a follow-up period of up to 23 hours. These findings provide further understanding of the physiological responses to cold during immersion, and of the potential influence of stress on haemostatic and inflammatory responses.

Keywords: catecholamines; cold stress; haemostasis; hypothermia; immersion; inflammation; thrombomodulin.