Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration

Genetics. 2016 Aug;203(4):1747-62. doi: 10.1534/genetics.116.188367. Epub 2016 May 25.

Abstract

Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration.

Keywords: F-spondin; Hox; cell migration; egl-5; mab-5.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / growth & development
  • Caenorhabditis elegans Proteins / genetics*
  • Cell Movement / genetics
  • Extracellular Matrix Proteins / genetics*
  • Homeodomain Proteins / genetics*
  • Muscles / innervation
  • Muscles / metabolism
  • Neural Stem Cells / metabolism
  • Neurogenesis / genetics*
  • Neurons / metabolism
  • Transcription Factors / genetics*

Substances

  • Caenorhabditis elegans Proteins
  • Egl-5 protein, C elegans
  • Extracellular Matrix Proteins
  • Homeodomain Proteins
  • Mab-5 protein, C elegans
  • Transcription Factors
  • lin-39 protein, C elegans
  • spon-1 protein, C elegans