Dryocrassin ABBA Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells Through a Caspase-Dependent Mitochondrial Pathway

Asian Pac J Cancer Prev. 2016;17(4):1823-8. doi: 10.7314/apjcp.2016.17.4.1823.

Abstract

Background: Biological and pharmacological activities of dryocrassin ABBA, a phloroglucinol derivative extracted from Dryopteris crassirhizoma, have attracted attention. In this study, the apoptotic effect of dryocrassin ABBA on human hepatocellular carcinoma HepG2 cells was investigated.

Materials and methods: We tested the effects of dryocrassin ABBA on HepG2 in vitro by MTT, flow cytometry, real-time PCR, and Western blotting. KM male mice were used to detect the effect of dryocrassin ABBA on H22 cells in vivo.

Results: Dryocrassin ABBA inhibited the growth of HepG2 cells in a concentration-dependent manner. After treatment with 25, 50, and 75 μg/mL dryocrassin ABBA, the cell viability was 68%, 60% and 49%, respectively. Dryocrassin ABBA was able to induce apoptosis, measured by propidium iodide (PI)/annexin V-FITC double staining. The results of real-time PCR and Western ting showed that dryocrassin ABBA up-regulated p53 and Bax expression and inhibited Bcl-2 expression which led to an activation of caspase-3 and caspase-7 in the cytosol, and then induction of cell apoptosis. In vivo experiments also showed that dryocrassin ABBA treatment significantly suppressed tumor growth, without major side effects.

Conclusions: Overall, these findings provide evidence that dryocrassin ABBA may induce apoptosis in human hepatocellular carcinoma cells through a caspase-mediated mitochondrial pathway.

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Benzylidene Compounds / pharmacology*
  • Blotting, Western
  • Carcinoma, Hepatocellular / drug therapy
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Caspases / genetics
  • Caspases / metabolism*
  • Cell Proliferation / drug effects
  • Cyclohexanones / pharmacology*
  • Humans
  • Liver Neoplasms / drug therapy
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Male
  • Membrane Potential, Mitochondrial / drug effects
  • Mice
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction / drug effects*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Benzylidene Compounds
  • Cyclohexanones
  • RNA, Messenger
  • dryocrassin
  • Caspases