Quantitative PPARγ expression affects the balance between tolerance and immunity

Sci Rep. 2016 May 25:6:26646. doi: 10.1038/srep26646.

Abstract

PPARγ modulates energy metabolism and inflammation. However, its specific functions in the balance of immunity in vivo have been explored incompletely. In this study, by the age of 14 mo, Pparg(C/-) mice with PPARγ expression at 25% of the normal level exhibited high autoantibody levels and developed mesangial proliferative glomerulonephritis, which resembled systemic lupus erythematosus (SLE)-like autoimmune disease. These symptoms were preceded by splenomegaly at an early age, which was associated with increases in splenocyte accumulation and B-cell activation but not with relocation of hematopoiesis to the spleen. The mechanism of splenic lymphocyte accumulation involved reduced sphingosine-1-phosphate receptor 1 (S1P1) expression and diminished migration toward S1P in the Pparg(C/-) splenocytes, which impeded lymphocyte egression. Mechanistically, increased Th17 polarization and IL-17 signaling in the Pparg(C/-) CD4(+) T cells contributed to B-cell hyperactivation in the spleen. Finally, the activation of the remaining PPARγ in Pparg(C/-) mice by pioglitazone increased S1P1 levels, reduced the Th17 population in the spleen, and ameliorated splenomegaly. Taken together, our data demonstrated that reduction of Pparg expression in T-helper cells is critical for spontaneous SLE-like autoimmune disease development; we also revealed a novel function of PPARγ in lymphocyte trafficking and cross talk between Th17 and B cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • B-Lymphocytes / immunology*
  • B-Lymphocytes / metabolism
  • B-Lymphocytes / pathology
  • Cell Movement / genetics
  • Cell Movement / immunology*
  • Gene Expression Regulation / immunology*
  • Immune Tolerance*
  • Immunity, Cellular*
  • Lupus Erythematosus, Systemic / genetics
  • Lupus Erythematosus, Systemic / immunology
  • Lupus Erythematosus, Systemic / pathology
  • Mice
  • Mice, Inbred NOD
  • Mice, Knockout
  • Mice, SCID
  • PPAR gamma / biosynthesis
  • PPAR gamma / genetics
  • PPAR gamma / immunology*
  • Th17 Cells / immunology*
  • Th17 Cells / metabolism
  • Th17 Cells / pathology

Substances

  • PPAR gamma