Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles

Nanoscale. 2016 Jun 2;8(22):11707-17. doi: 10.1039/c6nr01321j.

Abstract

Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts.