2'-O-Methyl- and 2'-O-propargyl-5-methylisocytidine: synthesis, properties and impact on the isoCd-dG and the isoCd-isoGd base pairing in nucleic acids with parallel and antiparallel strand orientation

Org Biomol Chem. 2016 Jun 7;14(21):4927-42. doi: 10.1039/c6ob00622a. Epub 2016 May 12.

Abstract

Oligonucleotides containing 2'-O-methylated 5-methylisocytidine (3) and 2'-O-propargyl-5-methylisocytidine (4) as well as the non-functionalized 5-methyl-2'-deoxyisocytidine (1b) were synthesized. MALDI-TOF mass spectra of oligonucleotides containing 1b are susceptible to a stepwise depyrimidination. In contrast, oligonucleotides incorporating 2'-O-alkylated nucleosides 3 and 4 are stable. This is supported by acid catalyzed hydrolysis experiments performed on nucleosides in solution. 2'-O-Alkylated nucleoside 3 was synthesized from 2'-O-5-dimethyluridine via tosylation, anhydro nucleoside formation and ring opening. The corresponding 4 was obtained by direct regioselective alkylation of 5-methylisocytidine (1d) with propargyl bromide under phase-transfer conditions. Both compounds were converted to phosphoramidites and employed in solid-phase oligonucleotide synthesis. Hybridization experiments resulted in duplexes with antiparallel or parallel chains. In parallel duplexes, methylation or propargylation of the 2'-hydroxyl group of isocytidine leads to destabilization while in antiparallel DNA this effect is less pronounced. 2'-O-Propargylated 4 was used to cross-link nucleosides and oligonucleotides to homodimers by a stepwise click ligation with a bifunctional azide.

MeSH terms

  • Base Pairing*
  • Chemistry Techniques, Synthetic
  • Cytidine / chemical synthesis*
  • Cytidine / chemistry*
  • DNA / chemistry*
  • Nucleic Acid Hybridization
  • RNA / chemistry*

Substances

  • isocytidine
  • Cytidine
  • RNA
  • DNA