Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections

J Med Microbiol. 2016 Jul;65(7):658-665. doi: 10.1099/jmm.0.000280. Epub 2016 May 23.

Abstract

Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. are three of the pathogens most frequently involved in infections of cancer patients, and the production of β -lactamases is a major mechanism of resistance due to its wide diversity of existing enzymes. Therefore, the aim of the present study was to investigate the microbiological profile and data related to patients and infections, and to search for β -lactamase genes in bacterial isolates from hospitalized cancer patients in a hospital in Recife, Pernambuco, Brazil. A total of 169 isolates were recovered between 2012 and 2014, of which 58 were P. aeruginosa, 36 were Acinetobacter spp. and 75 were Klebsiella spp. A high percentage of carbapenem resistance was observed in P. aeruginosa and Acinetobacter spp. Among the carbapenem-resistant bacteria, the blaSPM-1 gene was detected in P. aeruginosa (35.5 %) and Acinetobacter spp. (3.8 %), while blaKPC was detected in P. aeruginosa (25.8 %) only. Among the third- and fourth-generation cephalosporin-resistant strains, in Klebsiella spp. we detected the genes blaTEM (30.6 %), blaCTX-M (58.3 %) and blaKPC (5.6 %), and in Acinetobacter spp. only blaTEM (25.9 %). This the first report of an Acinetobacter baumannii blaSPM-1 gene carrier that has been isolated in Brazil. The most frequent cancer types were bowel tumour [14.8 %; 95 % confidence interval (CI95 %) 9.8-21.1 %], breast cancer (13.6 %; CI95 % 8.8-19.7 %) and prostate cancer (11.2%; CI95 % 6.9-17.0 %). These results therefore provide knowledge of susceptibility profile and resistance mechanisms and thus can contribute to the strategic formulation of hospital infection control plans and the rational use of antimicrobials, reducing mortality from infection levels in cancer patients.

MeSH terms

  • Acinetobacter / drug effects
  • Acinetobacter / enzymology*
  • Acinetobacter / genetics
  • Acinetobacter / isolation & purification
  • Acinetobacter Infections / microbiology
  • Brazil
  • Cross Infection / microbiology
  • Hospitals
  • Humans
  • Klebsiella / drug effects
  • Klebsiella / enzymology*
  • Klebsiella / genetics
  • Klebsiella / isolation & purification
  • Klebsiella Infections / microbiology
  • Neoplasms / complications*
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects
  • Pseudomonas aeruginosa / enzymology*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / isolation & purification
  • beta-Lactam Resistance
  • beta-Lactamases / genetics*

Substances

  • beta-Lactamases