A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations

IEEE Trans Biomed Circuits Syst. 2016 Dec;10(6):1143-1151. doi: 10.1109/TBCAS.2016.2523992. Epub 2016 May 18.

Abstract

Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms
  • Electrons
  • Equipment Design
  • Models, Theoretical
  • Monitoring, Physiologic / instrumentation
  • Monitoring, Physiologic / methods*
  • Semiconductors*