Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis)

Int J Food Microbiol. 2016 Aug 16:231:48-53. doi: 10.1016/j.ijfoodmicro.2016.05.012. Epub 2016 May 11.

Abstract

The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus and Campylobacter jejuni in laboratory contaminated live clam (Venerupis philippinarum) and mussel (Mytilus edulis) was investigated. The initial levels of bacterial contamination were: in clam 4.9 to 5.7log10CFU/g, and in mussel 5.1 to 5.5log10CFU/g. Two types of AEW were used for treatment time intervals of 1 and 2h: strong (SAEW) with an available chlorine concentration (ACC) of 20mg/L, pH=3.1, and an oxidation-reduction potential (ORP) of 1150mV, and weak (WAEW) at ACC of 10mg/L, pH=3.55 and ORP of 950mV. SAEW and WAEW exhibited significant inhibitory activity against inoculated bacteria in both shellfish species with significant differences compared to saline solutions treatments (1-2% NaCl) and untreated controls (0h). SAEW showed the largest inhibitory activity, the extent of reduction (log10CFU/g) ranged from 1.4-1.7 for E. coli O104:H4; 1.0-1.6 for L. monocytogenes; 1.3-1.6 for A. hydrophila; 1.0-1.5 for V. parahaemolyticus; and 1.5-2.2 for C. jejuni in both types of shellfish. In comparison, significantly (P<0.05) lower inhibitory effect of WAEW was achieved compared to SAEW, where the extent of reduction (log10CFU/g) ranged from 0.7-1.1 for E. coli O104:H4; 0.6-0.9 for L. monocytogenes; 0.6-1.3 for A. hydrophila; 0.7-1.3 for V. parahaemolyticus; and 0.8-1.9 for C. jejuni in both types of shellfish. Among all bacterial strains examined in this study, AEW induced less bacterial injury (~0.1-1.0log10CFU/g) and more inactivation effect. This study revealed that AEW (10-20mg/L ACC) could be used to reduce bacterial contamination in live clam and mussel, which may help control possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.

Keywords: Acidic electrolyzed water; Bacterial injury; Clam; Mussel.

MeSH terms

  • Animals
  • Bivalvia / microbiology
  • Colony Count, Microbial
  • Consumer Product Safety
  • Food Microbiology*
  • Hydrogen-Ion Concentration
  • Shellfish / microbiology*