Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain

Mol Microbiol. 2016 Sep;101(5):856-78. doi: 10.1111/mmi.13426. Epub 2016 Jun 16.

Abstract

Francisella tularensis causes a lethal human disease known as tularemia. As an intracellular pathogen, Francisella survives and replicates in phagocytic cells, such as macrophages. However, to establish an intracellular niche, Francisella must overcome the oxidative stress posed by the reactive oxygen species (ROS) produced by the infected macrophages. OxyR and SoxR/S are two well-characterized transcriptional regulators of oxidative stress responses in several bacterial pathogens. Only the OxyR homolog is present in F. tularensis, while the SoxR homologs are absent. The functional role of OxyR has not been established in F. tularensis. We demonstrate that OxyR regulates oxidative stress responses and provides resistance against ROS, thereby contributing to the survival of the F. tularensis subsp. holarctica live vaccine strain (LVS) in macrophages and epithelial cells and contributing to virulence in mice. Proteomic analysis reveals the differential production of 128 proteins in the oxyR gene deletion mutant, indicating its global regulatory role in the oxidative stress response of F. tularensis. Moreover, OxyR regulates the transcription of the primary antioxidant enzyme genes by binding directly to their putative promoter regions. This study demonstrates that OxyR is an important virulence factor and transcriptional regulator of the oxidative stress response of the F. tularensis LVS.

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Bacterial Proteins / metabolism
  • Bacterial Vaccines / immunology
  • Francisella tularensis / genetics
  • Francisella tularensis / immunology
  • Francisella tularensis / metabolism*
  • Gene Deletion
  • Humans
  • Mice
  • Oxidative Stress / genetics
  • Oxidative Stress / physiology*
  • Proteomics / methods
  • Reactive Oxygen Species / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Sequence Deletion
  • Tularemia / microbiology
  • Tularemia / prevention & control*
  • Vaccines, Attenuated / immunology
  • Virulence Factors / metabolism

Substances

  • Antioxidants
  • Bacterial Proteins
  • Bacterial Vaccines
  • Reactive Oxygen Species
  • Repressor Proteins
  • Vaccines, Attenuated
  • Virulence Factors