Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

Phys Rev Lett. 2016 May 6;116(18):184801. doi: 10.1103/PhysRevLett.116.184801. Epub 2016 May 5.

Abstract

High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ∼0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.