Feasibility and Operational Performance of Tuberculosis Detection by Loop-Mediated Isothermal Amplification Platform in Decentralized Settings: Results from a Multicenter Study

J Clin Microbiol. 2016 Aug;54(8):1984-91. doi: 10.1128/JCM.03036-15. Epub 2016 May 18.

Abstract

Currently available nucleic acid amplification platforms for tuberculosis (TB) detection are not designed to be simple or inexpensive enough to implement in decentralized settings in countries with a high burden of disease. The loop-mediated isothermal amplification platform (LAMP) may change this. We conducted a study in adults with symptoms suggestive of TB in India, Uganda, and Peru to establish the feasibility of using TB-LAMP (Eiken Chemical Co.) in microscopy laboratories compared with using smear microscopy against a reference standard of solid and liquid cultures. Operational characteristics were evaluated as well. A total of 1,777 participants met the eligibility criteria and were included for analysis. Overall, TB-LAMP sensitivities among culture-positive samples were 97.2% (243/250; 95% confidence interval [CI], 94.3% to 98.2%) and 62.0% (88/142; 95% CI, 53.5% to 70.0%) for smear-positive and smear-negative TB, respectively, but varied widely by country and operator. Specificities ranged from 94.5% (446/472; 95% CI, 92.0% to 96.4%) to 98.0% (350/357; 95% CI, 96.0% to 99.2%) by country. A root cause analysis identified high temperatures, high humidity, and/or low reaction volumes as possible causes for false-positive results, as they may result in nonspecific amplification. The study was repeated in India with training focused on vulnerable steps and an updated protocol; 580 participants were included for analysis. Specificity in the repeat trial was 96.6% (515/533; 95% CI, 94.7% to 97.9%). To achieve acceptable performance of LAMP at the microscopy center level, significant training and infrastructure requirements are necessary.

Publication types

  • Evaluation Study
  • Multicenter Study

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Female
  • Humans
  • India
  • Male
  • Middle Aged
  • Molecular Diagnostic Techniques / methods*
  • Nucleic Acid Amplification Techniques / methods*
  • Peru
  • Sensitivity and Specificity
  • Tuberculosis / diagnosis*
  • Uganda
  • Young Adult