In situ speciation of dissolved inorganic antimony in surface waters and sediment porewaters: development of a thiol-based diffusive gradients in thin films technique for Sb(III)

Environ Sci Process Impacts. 2016 Aug 10;18(8):992-8. doi: 10.1039/c6em00189k.

Abstract

Antimony is a priority environmental contaminant typically present as either the trivalent (Sb(III)) or the pentavalent (Sb(V)) oxidation state in aquatic systems. Both the toxicity and mobility of antimony are affected by its speciation, and thus the accurate measurement of antimony speciation is essential for investigating the behaviour of this contaminant in aquatic systems. Here we present a diffusive gradients in thin films (DGT) technique, which utilises a binding layer containing a thiol-based adsorbent (3-mercaptopropyl functionalised silica gel), for the selective measurement of Sb(III) in surface waters and sediment porewaters. We also evaluated the Metsorb DGT technique, which has been previously reported to accurately measure Sb(V), for its ability to accumulate Sb(III) and thus allow the measurement of total inorganic antimony. Both the mercapto-silica and Metsorb DGT techniques showed a high affinity for Sb(III), with uptake efficiencies >97%. Elution efficiencies of 86.9 ± 2.6% and 88.1 ± 1.2% were obtained for mercapto-silica and Metsorb, respectively, with 1 mol L(-1) H2O2 in 1 mol L(-1) NaOH. The accumulation of Sb(III) by these DGT techniques was linear with time (R(2) > 0.99) and unaffected by pH (4.07-8.05), ionic strength (0.001-1.0 mol L(-1) NaCl), bicarbonate (1-15 mmol L(-1)), and an artificial seawater matrix (pH 8.34; salinity 34.8). Finally, the mercapto-silica DGT technique was applied to measure porewater concentrations of Sb(III) and As(III) in a contaminated freshwater sediment at high resolution.

Publication types

  • Evaluation Study

MeSH terms

  • Antimony / analysis*
  • Chemistry Techniques, Analytical / methods*
  • Environmental Monitoring / methods*
  • Fresh Water / analysis
  • Hydrogen Peroxide
  • Osmolar Concentration
  • Seawater
  • Silica Gel
  • Sulfhydryl Compounds
  • Water Pollutants, Chemical / analysis*

Substances

  • Sulfhydryl Compounds
  • Water Pollutants, Chemical
  • Silica Gel
  • Antimony
  • Hydrogen Peroxide