Current sensing using circularly birefringent twisted solid-core photonic crystal fiber

Opt Lett. 2016 Apr 1;41(7):1672-5. doi: 10.1364/OL.41.001672.

Abstract

Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant.