Advanced Bioinks for 3D Printing: A Materials Science Perspective

Ann Biomed Eng. 2016 Jun;44(6):2090-102. doi: 10.1007/s10439-016-1638-y. Epub 2016 May 16.

Abstract

Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

Keywords: 3D printing; Bioinks; Hydrogels; Interpenetrating networks (IPNs); Nanomaterials; Supramolecular.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Humans
  • Ink
  • Printing, Three-Dimensional*
  • Tissue Engineering / instrumentation
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials