Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing

Opt Lett. 2016 May 15;41(10):2169-72. doi: 10.1364/OL.41.002169.

Abstract

We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1 μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.