The anisotropy of oxygen vacancy migration in SrTiO3

J Phys Condens Matter. 2016 Jun 8;28(22):225001. doi: 10.1088/0953-8984/28/22/225001. Epub 2016 May 13.

Abstract

Oxygen migration in perovskites is well known to occur via vacancies along the TiO6 octahedron edges. Ionic conduction depends further on the orientation of the crystal in the electric field. To study the anisotropy in cubic SrTiO3 single crystals, temperature-dependent electroformation measurements ranging from 11 °C to 50 °C have been conducted for representative crystallographic directions within the crystal system. Electroformation of pure SrTiO3 follows an Arrhenius behavior, implying an ionic migration process of intrinsic oxygen defects. Activation energies E A for oxygen vacancy migration have been determined to 0.70 eV for [Formula: see text] and [Formula: see text] directions in contrast to 0.77 eV for [Formula: see text]. Mobility of oxygen vacancies is enhanced in [Formula: see text] compared to [Formula: see text] and [Formula: see text] by up to half an order of magnitude. A migration model based on atomistic migration paths and their multiplicities accounts for these experimental variations in mobility.