Paired self-compensated spin-lock preparation for improved T1ρ quantification

J Magn Reson. 2016 Jul:268:49-57. doi: 10.1016/j.jmr.2016.04.017. Epub 2016 Apr 30.

Abstract

Purpose: Spin-lock (SL) imaging allows quantification of the spin-lattice relaxation time in the rotating frame (T1ρ). B0 and B1 inhomogeneities impact T1ρ quantification because the preparatory block in SL imaging is sensitive to the field heterogeneities. Here, a modified preparatory block (PSC-SL) is proposed that attempts to alleviate SL sensitivity to field inhomogeneities in scenarios where existing approaches fail, i.e. high SL frequencies.

Methods: Computer simulations, phantom and in vivo experiments were used to determine the effect of field inhomogeneities on T1ρ quantification. Existing SL preparations were compared with PSC-SL in different conditions to assess the advantages and disadvantages of each method.

Results: Phantom experiments and computer modeling demonstrate that PSC-SL provides superior T1ρ quantification at high SL frequencies in situations where the existing SL preparation methods fail. This result has been confirmed in pre-clinical neuro and body imaging at 7T.

Conclusion: PSC-SL complements existing methods by increasing the accuracy of T1ρ quantification at high spin-lock frequencies when large field inhomogeneities are present. A-priory information about the experimental conditions such, as field distribution and spinlock frequency are useful for selecting an appropriate spin-lock preparation for specific applications.

Keywords: Quantitative MRI; Spin-lock; T(1)(ρ).

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*
  • Signal-To-Noise Ratio
  • Spin Labels

Substances

  • Spin Labels