Hydrochromic Approaches to Mapping Human Sweat Pores

Acc Chem Res. 2016 Jun 21;49(6):1211-22. doi: 10.1021/acs.accounts.6b00128. Epub 2016 May 9.

Abstract

Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a colorimetric change near body temperature. This feature enables the use of this technique to generate high-quality images of sweat pores. This Account also focuses on the results of the most recent phase of this investigation, which led to the development of a simple yet efficient and reliable technique for sweat pore mapping. The method utilizes a hydrophilic polymer composite film containing fluorescein, a commercially available dye that undergoes a fluorometric response as a result of water-dependent interconversion between its ring-closed spirolactone (nonfluorescent) and ring-opened fluorone (fluorescent) forms. Surface-modified carbon nanodots (CDs) have also been found to be efficient for hydrochromic mapping of human sweat pores. The results discovered by Lou et al. [ Adv. Mater. 2015 , 27 , 1389 ] are also included in this Account. Sweat pore maps obtained from fingertips using these materials were found to be useful for fingerprint analysis. In addition, this hydrochromism-based approach is sufficiently sensitive to enable differentiation between sweat-secreting active pores and inactive pores. As a result, the techniques can be applied to clinical diagnosis of malfunctioning sweat pores. The directions that future research in this area will follow are also discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Carbon / chemistry
  • Fluorescein / chemistry
  • Humans
  • Nanoparticles / chemistry
  • Polyacetylene Polymer
  • Polymers / chemistry
  • Polyynes / chemistry
  • Skin / anatomy & histology*
  • Sweat*

Substances

  • Polyacetylene Polymer
  • Polymers
  • Polyynes
  • polydiacetylene
  • Carbon
  • Fluorescein