Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery

Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6892-5. doi: 10.1002/anie.201602142. Epub 2016 May 4.

Abstract

Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells.

Keywords: EPR spectroscopy; carbon corrosion; charging mechanism; lithium-air batteries; singlet oxygen.

Publication types

  • Research Support, Non-U.S. Gov't