Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes

Langmuir. 2016 May 31;32(21):5365-72. doi: 10.1021/acs.langmuir.6b00796. Epub 2016 May 16.

Abstract

For the scalable fabrication of transparent electrodes and optoelectronic devices, excellent adhesion between the conductive films and the substrates is essential. In this work, a novel mussel-inspired polydopamine-functionalized graphene/silver nanowire hybrid nanomaterial for transparent electrodes was fabricated in a facile manner. Graphene oxide (GO) was functionalized and reduced by polydopamine while remaining stable in water without precipitation. It is shown that the polydopamine-functionalized GO (PFGO) film adhered to the substrate much more easily and more uniformly than the GO film. The PFGO film had a sheet resistance of ∼3.46 × 10(8) Ω/sq and a transparency of 78.2%, with excellent thermal and chemical stability; these characteristics are appropriate for antistatic coatings. Further reduced PFGO (RPFGO) as a conductive adhesion promoter and protective layer for the Ag nanowire (AgNW) significantly enhanced the adhesion force between AgNW networks and the substrate. The RPFGO-AgNW electrode was found to have a sheet resistance of 63 Ω/sq and a transparency of 70.5%. Moreover, the long-term stability of the RPFGO-AgNW electrode was greatly enhanced via the effective protection of the AgNW by RPFGO. These solution-processed antistatic coatings and electrodes have tremendous potential in the applications of optoelectronic devices as a result of their low production cost and facile processing.

Publication types

  • Research Support, Non-U.S. Gov't