Development of a nanosphere adsorbent for the removal of fluoride from water

J Colloid Interface Sci. 2016 Aug 1:475:17-25. doi: 10.1016/j.jcis.2016.04.037. Epub 2016 Apr 24.

Abstract

A new uniform-sized CeCO3OH nanosphere adsorbent was developed, and tested to establish its efficiency, using kinetic and thermodynamic studies, for fluoride removal. The results demonstrated that the CeCO3OH nanospheres exhibited much high adsorption capacities for fluoride anions due to electrostatic interactions and exchange of the carbonate and hydroxyl groups on the adsorbent surface with fluoride anions. Adsorption kinetics was fitted well by the pseudo-second-order model as compared to a pseudo-first-order rate expression, and adsorption isotherm data were well described by Langmuir model with max adsorption capacity of 45mg/g at pH 7.0. Thermodynamic examination demonstrated that fluoride adsorption on the CeCO3OH nanospheres was reasonably endothermic and spontaneous. Moreover, the CeCO3OH nanospheres have less influence on adsorption of F(-) by pH and co-exiting ions, such as SO4(2-), Cl(-), HCO3(-), CO3(2-), NO3(-) and PO4(3-), and the adsorption efficiency is very high at the low initial fluoride concentrations in the basis of the equilibrium adsorption capacities. This study indicated that the CeCO3OH nanospheres could be developed into a very viable technology for highly effective removal of fluoride from drinking water.

Keywords: Adsorption; Carbonate; CeCO(3)OH nanospheres; Fluoride.