Stimulated Raman scattering detection for chemically specific time-resolved imaging of gases

Opt Express. 2016 May 2;24(9):9984-93. doi: 10.1364/OE.24.009984.

Abstract

A stimulated Raman scattering (SRS) imaging technique based on spatial modulation of the pump beam has been used to study gases. The SRS gain signal was separated from the Stokes beam background in the spatial frequency domain. The SRS signal shows linear behaviour with the gas pressure at a range from 1.0 to 8.0 bars. The signal is linearly proportional to the pump beam intensity while it is enhanced with increasing the Stokes beam intensity to a certain limit than it saturates. Further, the chemical specificity of the technique has been investigated. Two sharp peaks with line width at half maximum of about 0.30 nm have been obtained at Stokes beam wavelengths of 629.93 nm and 634.05 nm corresponding to the methane and ethylene gases, respectively. The results show that SRS imaging is a promising technique to provide chemical specificity as well as spatial and temporal information of gaseous species.