Maltodextrins from chemically modified starches. Selected physicochemical properties

Carbohydr Polym. 2016 Aug 1:146:301-9. doi: 10.1016/j.carbpol.2016.03.057. Epub 2016 Mar 22.

Abstract

The aim of this work was to evaluate the effect of chemical modification of starch (cross-linking and/or stabilisation) on selected rheological and functional properties of maltodextrins of dextrose equivalent of 6, 11 and 16. It was found that values of glass transition temperatures were decreasing with dextrose equivalent of maltodextrin. The highest values of glass transition temperature (TG) were determined for maltodextrin of DE 6-obtained from distarch phosphate and acetylated distarch phosphate. Increase in DE value of maltodextrin was also accompanied by decrease and increase in values of intrinsic viscosity and the critical concentration, respectively; however, there was no significant effect of kind of chemical modification of starch on the values of these parameters. Maltodextrin solutions at concentrations of from 10 to 70 % exhibited Newtonian flow behaviour. In the case of 50% solutions of maltodextrins of DE 6 the highest viscosity was produced by maltodextrin from native potato starch, while the lowest one by maltodextrin from acetylated starch. On the other hand, among the maltodextrin of DE 11 this one produced from acetylated starch showed the highest viscosity. All the maltodextrins exhibited surfactant properties in a water-air system, with the strongest effect observed for maltodextrins produced from double chemically modified starches and from acetylated starch. The surface activity was increasing with increasing of the DE value of maltodextrin. Moreover, values of surface tension were decreasing with increasing in maltodextrin concentration in the system.

Keywords: Glass transition temperature; Maltodextrins; Rheological properties; Surface activity.

Publication types

  • Research Support, Non-U.S. Gov't