Interaction of G protein coupled receptors and cholesterol

Chem Phys Lipids. 2016 Sep:199:61-73. doi: 10.1016/j.chemphyslip.2016.04.006. Epub 2016 Apr 20.

Abstract

G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

Keywords: Cholesterol; Conformation; Crystallization; GPCR; Receptor; Stability.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Cholesterol / chemistry
  • Cholesterol / metabolism*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Ligands
  • Protein Binding
  • Receptors, G-Protein-Coupled / chemistry
  • Receptors, G-Protein-Coupled / metabolism*

Substances

  • Ligands
  • Receptors, G-Protein-Coupled
  • Cholesterol