Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination

PLoS One. 2016 Apr 22;11(4):e0153035. doi: 10.1371/journal.pone.0153035. eCollection 2016.

Abstract

The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer's disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amyloid beta-Peptides / chemistry*
  • Animals
  • Cell Line, Tumor
  • Enzyme-Linked Immunosorbent Assay
  • Oligopeptides / chemistry*
  • Rats

Substances

  • Amyloid beta-Peptides
  • Oligopeptides

Grants and funding

D. W. was supported by grants from the “Portfolio Technology and Medicine”, the “Portfolio Drug Research” and the Helmholtz-Validierungsfonds of the Impuls und Vernetzungs-Fonds der Helmholtzgemeinschaft. D.W. was also supported by the TT-Fonds of the Technology Transfer Department of the Forschungszentrum Jülich.