Ghrelin mitigates β-cell mass loss during insulitis in an animal model of autoimmune diabetes mellitus, the BioBreeding/Worcester rat

Diabetes Metab Res Rev. 2017 Jan;33(1). doi: 10.1002/dmrr.2813. Epub 2016 Jun 14.

Abstract

Background: Ghrelin is a peptide hormone with pleiotropic effects. It stimulates cell proliferation and inhibits apoptosis-mediated cell death. It prevents diabetes mellitus in several models of chemical, surgical and biological toxic insults to pancreas in both in vivo and in vitro models and promotes glucose-stimulated insulin secretion under cytotoxic conditions. It has not yet been tested in vivo in an autoimmune model of diabetes with a persistent insult to the β-cell. Given the immunomodulating effects of ghrelin and its trophic effects on β-cells, we hypothesized that ghrelin treatment during the early stages of insulitis would delay diabetes onset.

Methods: BioBreeding/Worcester male rats received ghrelin (10 ng/kg/day) before insulitis development. Glucose metabolism was characterized by glucose and insulin tolerance tests. β-cell mass, islet area, islet number, β-cell clusters, proliferation and apoptosis and degree of insulitis were analysed by histomorphometry. A Kaplan-Meier survival curve was plotted and analysed applying the log-rank (Mantel-Cox) test.

Results: Ghrelin treatment significantly reduced the probability of developing diabetes in our model (p < 0.0001). It decreased islet infiltration and partially prevented β-cell mass loss, enabling the maintenance of β-cell neogenesis and proliferation rates. Furthermore, ghrelin treatment did not induce any metabolic perturbations.

Conclusions: These findings support the hypothesis that ghrelin delays the development of autoimmune diabetes by attenuating insulitis and supporting β-cell mass.

General significance: Ghrelin promotes β-cell viability and function through diverse mechanisms that may have significant implications for diabetes prevention, therapy and also transplant success of both islets and complete pancreas. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: autoimmne; cytokines; ghrelin; prevention; type 1 diabetes; β-cell viability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Proliferation / drug effects
  • Cell Size
  • Diabetes Mellitus, Type 1 / immunology
  • Diabetes Mellitus, Type 1 / pathology
  • Diabetes Mellitus, Type 1 / prevention & control*
  • Disease Models, Animal*
  • Ghrelin / pharmacology*
  • Hypoglycemic Agents / metabolism
  • Insulin / metabolism*
  • Insulin Resistance*
  • Insulin-Secreting Cells / drug effects*
  • Insulin-Secreting Cells / metabolism
  • Insulin-Secreting Cells / pathology
  • Islets of Langerhans / drug effects*
  • Islets of Langerhans / metabolism
  • Islets of Langerhans / pathology
  • Male
  • Rats
  • Rats, Inbred BB

Substances

  • Ghrelin
  • Hypoglycemic Agents
  • Insulin