Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China

PLoS One. 2016 Apr 21;11(4):e0153809. doi: 10.1371/journal.pone.0153809. eCollection 2016.

Abstract

Background: Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity.

Methods: Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment.

Results: Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments.

Conclusion: Deepinter-row subsoilingwith annual repetition significantly boosts yield by alleviating SWD in critical growth period and increasing SWS in 20-80 cm soil depth. The results allow us to conclude that AS-50 can be adopted as an effective approach to increase crop productivity, alleviate water stress, and improve soil water availability for spring maize in northern China.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Crops, Agricultural / growth & development*
  • Soil*
  • Water*
  • Zea mays / growth & development*

Substances

  • Soil
  • Water

Grants and funding

This research was jointly supported by the China Agriculture Research System (CARS-02), the National Natural Science Fund (51309226), the Agricultural Science and Technology Innovation Program (ASTIP), the Special Fund for Agro-scientific Research in the Public Interest (201203077 and 201503117), and the Natural Science Foundation of Henan Province (162300410154). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.