Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration

Phys Rev E. 2016 Mar;93(3):033310. doi: 10.1103/PhysRevE.93.033310. Epub 2016 Mar 22.

Abstract

We propose using the Maxwell iteration to derive the hydrodynamic equations from the lattice Boltzmann equation (LBE) with an external forcing term. The proposed methodology differs from existing approaches in several aspects. First, it need not explicitly introduce multiple-timescales or the Knudsen number, both of which are required in the Chapman-Enskog analysis. Second, it need not use the Hilbert expansion of the hydrodynamic variables, which is necessary in the asymptotic analysis of the LBE. The proposed methodology assumes the acoustic scaling (or the convective scaling) δ(t)∼δ(x), thus δ(t) is the only expansion parameter in the analysis of the LBE system, and it leads to the Navier-Stokes equations in compressible form. The forcing density derived in this work can reproduce existing forcing schemes by adjusting appropriate parameters. The proposed methodology also analyzes the numerical accuracy of the LBE. In particular, it shows the Mach number Ma should scale as O(δ(t)(1/3)) to maintain the truncation errors due to Ma and δ(t) in balance when δ(t)→0, so that the LBE can converge to the expected hydrodynamic equations effectively and efficiently.

Publication types

  • Research Support, Non-U.S. Gov't