(7R,8S)-9-acetyl-dehydrodiconiferyl alcohol inhibits inflammation and migration in lipopolysaccharide-stimulated macrophages

Phytomedicine. 2016 May 15;23(5):541-9. doi: 10.1016/j.phymed.2016.02.018. Epub 2016 Mar 2.

Abstract

Background: (7R, 8S)-9-Acetyl-dehydrodiconiferyl alcohol (ADDA), a novel lignan compound isolated from Clematis armandii Franch (Ranunculaceae) stems, has been found to exert potential anti-inflammatory activities in vitro.

Purpose: To investigate the pharmacological effects and molecular mechanisms of ADDA on lipopolysaccharide (LPS)-induced activation and migration of macrophages.

Study design/methods: Macrophages were stimulated with LPS in the presence or absence of ADDA. Expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) were measured by Western blot and commercial NO detection kit. Cellular viability and chemotactic properties of macrophages were investigated using MTT and transwell migration assays. The activation and expression of mitogen activated protein kinases, nuclear factor-κB (NF-κB), protein kinase B (Akt), Src, and focal adhesion kinase (FAK) were analyzed by Western blot.

Results: Non-toxic concentrations (12.5-50 µM) of ADDA concentration-dependently inhibited expression/release of inflammatory mediators (COX-2, iNOS, and NO), suppressed Akt and c-jun N-terminal kinase 1/2 (JNK) phosphorylation, and NF-κB activation in LPS-stimulated macrophages. In addition, ADDA blocked LPS-mediated macrophage migration and this was associated with inhibition of LPS-induced Src and FAK phosphorylation as well as Src expression in a concentration dependent manner. Notably, the inhibitory effects of ADDA on iNOS, NO, and Src could be mimicked by a Src inhibitor PP2 or an iNOS inhibitor l-NMMA.

Conclusion: Our results suggested that ADDA attenuated LPS-induced inflammatory responses in macrophages and cell migration, at least in part, through inhibition of NF-κB activation and modulation of iNOS/Src/FAK axis.

Keywords: (7R,8S)-9-Acetyl-dehydrodiconiferyl alcohol; Inflammation; Lipopolysaccharide; Migration; Raw264.7; Src.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology*
  • Cell Movement / drug effects
  • Clematis / chemistry
  • Cyclooxygenase 2 / metabolism
  • Inflammation / metabolism
  • Lignans / pharmacology*
  • Lipopolysaccharides / pharmacology
  • Macrophages / drug effects*
  • Mice
  • Mitogen-Activated Protein Kinase 8 / metabolism
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / metabolism
  • Nitric Oxide / metabolism
  • Nitric Oxide Synthase Type II / metabolism
  • Phosphorylation / drug effects
  • Plant Stems / chemistry
  • Proto-Oncogene Proteins c-akt / metabolism
  • RAW 264.7 Cells

Substances

  • (7R,8S)-dihydrodehydrodiconiferyl alcohol 4-beta-D-xyloside
  • Anti-Inflammatory Agents
  • Lignans
  • Lipopolysaccharides
  • NF-kappa B
  • Nitric Oxide
  • Nitric Oxide Synthase Type II
  • Nos2 protein, mouse
  • Ptgs2 protein, mouse
  • Cyclooxygenase 2
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 8
  • Mitogen-Activated Protein Kinases