Synthesis, Structure, and Properties of the Fullerene C60 Salt of Crystal Violet, (CV(+) )(C60 (.-) )⋅0.5 C6 H4 Cl2 , which Contained Closely Packed Zigzagged C60 (.-) Chains

Chem Asian J. 2016 Jun 6;11(11):1705-10. doi: 10.1002/asia.201600242. Epub 2016 May 11.

Abstract

The reduction of fullerene C60 by zinc dust in the presence of crystal violet cations (CV(+) ) yielded a deep-blue solution, from which crystals of (CV(+) )(C60 (.-) )⋅0.5 C6 H4 Cl2 (1) were obtained by slow mixing with n-hexane. The salt contained isolated, closely packed zigzagged chains that were composed of C60 (.-) radical anions with a uniform interfullerene center-to-center distance of 9.98 Å. In spite of the close proximity of the fullerenes, they did not dimerize, owing to spatial separation by the phenyl substituents of CV(+) . The room-temperature conductivity of compound 1 was 3×10(-2) S cm(-1) along the fullerene chains. The salt exhibited semiconducting behavior, with an activation energy of Ea =167 meV. Spins localized on C60 (.-) were antiferromagnetically coupled within the fullerene chains, with a Weiss temperature of -19 K without long-range magnetic ordering down to 1.9 K.

Keywords: antiferromagnetic interactions; crystal violet; fullerenes; magnetic properties; radicals.

Publication types

  • Research Support, Non-U.S. Gov't