Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings

Langmuir. 2016 May 3;32(17):4370-81. doi: 10.1021/acs.langmuir.6b00531. Epub 2016 Apr 19.

Abstract

Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine-substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES-dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.