Protein permeation through an electrically tunable membrane

Nanotechnology. 2016 May 20;27(20):205201. doi: 10.1088/0957-4484/27/20/205201. Epub 2016 Apr 4.

Abstract

Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein's dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane-electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Diffusion
  • Electrolytes / chemistry
  • Insulin / chemistry*
  • Membranes, Artificial*
  • Models, Molecular
  • Motion
  • Nanopores / ultrastructure
  • Permeability
  • Semiconductors*
  • Static Electricity

Substances

  • Electrolytes
  • Insulin
  • Membranes, Artificial