Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: A potential approach for sustainable waste management

J Hazard Mater. 2016 Jul 15:312:319-328. doi: 10.1016/j.jhazmat.2016.03.009. Epub 2016 Mar 9.

Abstract

A potential approach for sustainable waste management of the spent battery material (SBM) is established for manufacturing conductive polyaniline (PANI) nanocomposites as electrode materials for supercapacitors, following the principle of "What comes from the power should be used for the power". The ternary nanocomposites (G/MnO2/PANI) containing PANI, graphite powder (G) and remanent MnO2 nanoparticles and the binary nanocomposites of polyaniline and graphite powder (G/PANI) are synthesized by the chemical oxidative polymerization of aniline in hydrochloric aqueous solution with the MnO2 nanoparticles in the spent battery powder (SBP) as oxidant. The G/PANI sample, which was prepared with MnO2/aniline mole ratio of 1:1 with 1.0mL aniline in 50mL of 1.0molL(-1) HCl, exhibits the electrical conductivity of 22.22Scm(-1), the highest specific capacitance up to 317Fg(-1) and the highest energy density of 31.0 Wh kg(-1), with retention of as high as 84.6% of its initial capacitance after 1000 cycles, indicating good cyclic stability.

Keywords: Energy storage; Polyaniline; Spent battery powder; Supercapacitor; Sustainable waste management.

Publication types

  • Research Support, Non-U.S. Gov't