Measurement of inkjet first-drop behavior using a high-speed camera

Rev Sci Instrum. 2016 Mar;87(3):035101. doi: 10.1063/1.4940934.

Abstract

Drop-on-demand inkjet printing has been used as a manufacturing tool for printed electronics, and it has several advantages since a droplet of an exact amount can be deposited on an exact location. Such technology requires positioning the inkjet head on the printing location without jetting, so a jetting pause (non-jetting) idle time is required. Nevertheless, the behavior of the first few drops after the non-jetting pause time is well known to be possibly different from that which occurs in the steady state. The abnormal behavior of the first few drops may result in serious problems regarding printing quality. Therefore, a proper evaluation of a first-droplet failure has become important for the inkjet industry. To this end, in this study, we propose the use of a high-speed camera to evaluate first-drop dissimilarity. For this purpose, the image acquisition frame rate was determined to be an integer multiple of the jetting frequency, and in this manner, we can directly compare the droplet locations of each drop in order to characterize the first-drop behavior. Finally, we evaluate the effect of a sub-driving voltage during the non-jetting pause time to effectively suppress the first-drop dissimilarity.